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Abstract

Protein sequence design is a natural inverse problem to protein structure predic-

tion: given a target structure in three dimensions, we wish to design an amino acid
sequence that is likely fold to it. A model of Sun, Brem, Chan, and Dill casts this

problem as an optimization on a space of sequences of hydrophobic (H) and polar (P)
monomers; the goal is to find a sequence which achieves a dense hydrophobic core with

few solvent-exposed hydrophobic residues. Sun et al. developed a heuristic method to
search the space of sequences, without a guarantee of optimality or near-optimality;

Hart subsequently raised the computational tractability of constructing an optimal se-
quence in this model as an open question. Here we resolve this question by providing

an efficient algorithm to construct optimal sequences; our algorithm has a polynomial
running time, and performs very efficiently in practice. We illustrate the implementa-
tion of our method on structures drawn from the Protein Data Bank. We also consider

extensions of the model to larger amino acid alphabets, as a way to overcome the lim-
itations of the binary H/P alphabet. We show that for a natural class of arbitrarily

large alphabets, it remains possible to design optimal sequences efficiently.
Finally, we analyze some of the consequences of this sequence design model for

the study of evolutionary fitness landscapes. A given target structure may have many
sequences that are optimal in the model of Sun et al.; following a notion raised by the

work of J. Maynard Smith, we can ask whether these optimal sequences are “connected”
by successive point mutations. We provide a polynomial-time algorithm to decide this

connectedness property, relative to a given target structure. We develop the algorithm
by first solving an analogous problem expressed in terms of submodular functions, a
fundamental object of study in combinatorial optimization.
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1 Introduction

Protein Sequence Design. Understanding the principles by which proteins adopt their
native three-dimensional structures is a fundamental issue, involving a rich set of biophysical
and computational problems. The intensively studied problem of protein structure prediction
begins with a given amino acid sequence and seeks to characterize, by computational means,
the structure or range of structures that that this sequence will adopt under physiological
conditions [27]. There is a natural “inverse” version of this problem, the object of several
recent studies [11, 30, 37, 34, 10, 33, 17, 3], in which one begins with a given three-dimensional
protein structure, and seeks to determine the sequence or collection of sequences most likely
to fold to this structure. Recent work has indicated that this problem of protein sequence
design — also referred to as the inverse protein folding problem — can provide a valuable
perspective on the issues surrounding protein structure.

Determining an appropriate model in which to study the protein sequence design problem
is a challenging prospect in itself. In an interesting recent development, a set of related
approaches has been advanced in the biophysics community (Sun, Brem, Chan, and Dill
[33], Shakhnovich and Gutin [34], Deutsch and Kurosky [10]); these approaches cast sequence
design as a global optimization problem on the space of amino acid sequences. Roughly, they
search for the sequence that optimizes a fitness function, constructed to favor the properties
that a “good” sequence is presumed to possess. Through the development of an appropriate
fitness function, these approaches attempt implicitly to capture the competing requirements
of positive design — the designed sequence should have low free energy in the target structure
— and negative design — there should be very few other “competing” structures in which
the designed sequence has comparable free energy [9, 37].

The present work: Computing optimal sequences. In this work, we begin by focusing
on one of these sequence design models, the Grand Canonical (GC) model of Sun, Brem,
Chan, and Dill [33]. We will define the model fully in Section 2. For now, it is enough to note
that the GC model works with (i) an accurate three-dimensional geometric representation
of a target structure with n amino acid residues; (ii) a binary folding code in which there
is only a distinction between hydrophobic (H) and polar (P) residues [23, 9]; and (iii) a
fitness function Φ defined in terms of the target structure so as to favor sequences with a
dense hydrophobic core and to penalize sequences with many solvent-exposed hydrophobic
residues. With respect to a given geometric target structure, one is interested in the H/P
sequence(s) whose fitness is optimal. While the use of a two-letter H/P amino acid alphabet
is clearly a simplification, there has been considerable work (see e.g. [23, 9, 21]) suggesting
that modeling a protein as a heteropolymer with only two amino acid types captures many
of the qualitative aspects of protein structure.

There have been several recent studies aimed at understanding the relationship between
such sequences of optimal fitness in the GC model and those found in real proteins [33, 3, 28].
However, the following issue stood in the way of a complete assessment of the model’s
biological accuracy: It was not known how to compute optimal sequences in the GC model,
short of a computationally infeasible brute-force search over sequence space. Indeed, Hart
raised the computational tractability of computing an optimal sequence, with respect to a

2



www.manaraa.com

three-dimensional geometric target structure, as an open question [17].
We resolve this question by providing an efficient algorithm to find optimal protein se-

quences in the general GC model with respect to a three-dimensional geometric structure.
Our algorithm has a running time that is polynomial in the length of the sequence being
designed; and we have produced an implementation of the algorithm (on top of discrete opti-
mization code of Cherkassky and Goldberg [6]) that runs very efficiently on sequences derived
from real data. Indeed, the algorithm runs to optimality in a few seconds on target struc-
tures more than twice as large as those studied by Sun et al. [33]. (See the plot in Figure 2,
which depicts the running time of our implementation (as a function of sequence length) on
25 target protein structures from the Protein Data Bank (PDB) [4].) Our algorithm makes
use of techniques from the area of network flow [1], a powerful body of algorithmic work that
we feel could have promising applications to other biomolecular structure problems as well.

Given an efficient algorithm to design optimal sequences, we are able to perform assess-
ments of the type in [33, 28]: for a protein drawn from the PDB, we can compute an optimal
sequence for it under the GC model, and compare this to the protein’s actual amino acid
sequence. We are also able to use our algorithmic techniques to develop extensions of the
GC model in which optimal sequences can still be computed efficiently. One of these models
allows for a class of amino acid alphabets of arbitrarily large size, provided that their contact
energies satisfy certain conditions. This allows one to overcome the limitations of the binary
H/P alphabet and study certain types of 20-letter amino acid alphabets, while still being
able to compute optimal sequences. We also consider a natural fractional version of the GC
model, in which each residue can specify an arbitrary real-valued hydrophobicity value. We
show that optimal sequences can be computed efficiently in this model as well; but we also
show a surprising sense in which this seemingly more general fractional model degenerates
into the standard GC model.

The present work: Evolutionary fitness landscapes. There is now a wealth of
evidence that proteins with little sequence similarity can still adopt very similar three-
dimensional structures [18, 19]. This suggests that for a physiologically “important” protein
structure, a wide range of sequences are capable of folding to it; in this context, one is in-
terested in the evolutionary relationships among such a collection of diverse sequences with
common folding behavior. The GC model can provide us with an interesting computational
approach to such issues: with respect to a given target structure, we can study the set Ω
of all sequences that are optimal under the associated fitness function Φ, and understand
the structure of this space with respect to mutations. We note that the set Ω can be quite
large: it is not difficult to construct examples in which the number of optimal sequences is
exponential in n.

The most basic type of mutation in the GC model is a one-point mutation: a single
position in a protein sequence flips from one type of amino acid to the other. (Recall that
the model has a binary amino acid alphabet.) A question of fundamental interest is whether
the set Ω of optimal sequences for a given structure has the following natural connectedness
property: if S and S ′ are both sequences in Ω, then there is a chain of one-point mutations
transforming S to S ′, so that all intermediate sequences in this transformation lie in Ω as
well. Such a chain represents a hypothesized evolutionary “trajectory” by which S and
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S ′ diverged, with the property that all intermediate sequences on this trajectory retained
a strong propensity to fold to the target structure. This notion is captured in Maynard
Smith’s discussion of natural selection of proteins [26], which served to motivate recent
evolutionary analyses of lattice protein models [9, 24, 25]: “If evolution by natural selection
is to occur, functional proteins must form a continuous network which can be traversed by
unit mutational steps without passing through non-functional intermediates” [26]. More
generally, the notion of such evolutionary pathways through functional sequences is central
to the study of neutral networks in sequence space (e.g. [2, 22, 20, 26, 31]), in which one is
concerned with the effect of fitness-preserving mutations on the dynamics of evolution.

In this paper, we provide the first polynomial-time algorithm for determining whether
the set of optimal sequences for a given target structure in the GC model is connected under
one-point mutations. We will refer to this as the global connectivity problem. Even when the
set of optimal sequences is not connected, we may ask, for a specific pair of optimal sequences
S and S ′, whether there is a sequence of mutations from S to S ′ so that all intermediates
are optimal. We show how to solve this pairwise connectivity problem in polynomial time as
well.

We can in fact solve these two problems in a more general framework, in which the
“unit mutational step” may consist of the simultaneous mutation of several positions in the
sequence; we define this generalization precisely in Section 4. Note that determining the
connectedness of the optimal set Ω — or the pairwise connectivity of two specific sequences
— involves the following challenge: Ω can have a size that is exponential in n, the number of
residues in the target structure; thus, if our algorithm is to run in time polynomial in n, it
must operate without explicitly examining more than a negligible fraction of the sequences
in Ω.

To solve these connectedness problems, we first develop efficient algorithms for the fol-
lowing basic problems in combinatorial optimization. (See Section 4 for definitions.) Let f
be an arbitrary submodular function, which maps subsets of an n-element set U to R, and
let Ωf denote the collection of all subsets U ′ of U on which f attains its minimum value. The
classical submodular function minimization problem asks for a polynomial-time algorithm to
produce a member of Ωf . In order to deal with the global connectivity problem discussed
above, we must solve the problem of determining whether the set Ωf is connected in the
following sense: for any two sets U ′, U ′′ ∈ Ωf , there should be a sequence of insertions and
deletions of single elements that transforms U ′ into U ′′, in such a way that each intermediate
set is also in Ωf . Analogously, for the pairwise connectivity problem, we are given specific U ′

and U ′′ in Ωf , and we must decide whether there is a sequence of insertions and deletions of
single elements that transforms U ′ into U ′′. We provide polynomial-time algorithms for these
problems, assuming only “black-box” access to f . More generally, suppose we are given an
arbitrary collection Λ of subsets of U that is downward-closed: if L ∈ Λ and L′ ⊆ L, then
L′ ∈ Λ. If we view members of Λ as representing allowable unit mutational steps, our notion
of connectedness becomes the following: for two sets U ′, U ′′ ∈ Ωf , there should be a sequence
of sets U1, U2, . . . , Ut, each belonging to Ωf , so that U1 = U ′, Ut = U ′′, and for each i, the
symmetric difference (Ui − Ui+1) ∪ (Ui+1 − Ui) belongs to Λ. We provide polynomial-time
algorithms for our two problem under this generalization, assuming only “black-box” access
to f and an “oracle” that tells us, for a given L, whether L ∈ Λ.
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We feel that “connectedness” problems of this sort represent a natural and interesting
genre of combinatorial optimization problems, motivated very cleanly by evolutionary issues
of the type discussed above. Our algorithms here are among the first theoretical results we
are aware of in this direction, and we hope that they help to encourage further algorithmic
exploration of this issue.

Overview. The remainder of the paper is organized as follows.

• In Section 3, we describe our polynomial-time algorithm to compute optimal sequences
in the GC model, an efficient implementation of this algorithm, and the results of
experiments we performed on target structures drawn from the Protein Data Bank
(PDB).

• In Section 4, we discuss the analysis of evolutionary fitness landscapes for sequences in
terms of the GC model, providing polynomial-time algorithms to determine whether
the fitness function for a target structure satisfies Maynard Smith’s “connectedness”
criteria on optimal sequences. This builds on efficient algorithms that we develop for
the analogous problems involving general submodular functions.

• In Section 5, we describe our extensions to the GC model, which still allow for the
efficient computation of optimal sequences. These include classes of arbitrarily large
amino acid alphabets, and models with a continuum of possible hydrophobicity values.

We begin, in Section 2, with an overview of the GC model of Sun et al. [33], which forms
the initial basis for our algorithms and experiments.

2 The GC Model of Sun et al.

In order to fully define the GC model, we must specify the geometric representation of the
target structure, and the fitness function Φ on the set of possible sequences. Following Sun
et al. [33], the target structures will be structures of proteins whose native conformations
are known; this allows for the most informative test of the computational techniques, since
there is a natural “true” sequence corresponding to each such target structure. A simplified
geometric representation of such a structure is obtained by constructing a sphere of the
appropriate radius at the location of each non-hydrogen backbone atom, and replacing the

side chain of each residue with a single “side chain bead,” of radius 2
o

A, at a distance of 3
o

A
along the Cα-Cβ bond vector [33]. In this way, the residues in the target structure are made
“uniform.” (Sun et al. position the side chain bead for a glycine residue at a distance of

3
o

A along a vector inferred from the tetrahedral geometry of its Cα; we, on the other hand,
position the glycine side chain bead at the location of the Cα. We find that the experimental
results are affected very little by this decision.) For each side chain bead, one also computes

the area of its solvent-accessible contact surface with respect to a standard 1.4
o

A solvent
probe [32]. (For this, we used the algorithm and implementation ASC of Eisenhaber and
Argos [12, 13].)
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We now define the optimization function in the GC model, for a given target structure
with n residues. To design a sequence, we must specify which residues in the target structure
will be H (hydrophobic), and which will be P (polar); thus, we say that a protein sequence
S is a sequence of n symbols, each of which is either H or P . We use SH to denote the
set of numbers i such that the ith position in the sequence S is equal to H; we define SP

analogously. Now, the fitness Φ(S) of a sequence S, with respect to the target structure, is
a scoring function motivated by the following (partially conflicting) requirements. We would
like the H residues in S to have low solvent-accessible surface area; we would also like H
residues to be close to one another in space, so as to form a compact hydrophobic core. Thus
one defines Φ by

Φ(S) = α
∑

i,j∈SH
i<j−2

g(dij) + β
∑

i∈SH

si.

Here si denotes the area of the solvent-accessible contact surface of the side chain for residue

i (in
o

A
2

), and dij denotes the distance between the side chain centers of residues i and j

(in
o

A). g is a sigmoidal function that rewards small distances; in [33] it is defined to be
1

1+exp(dij−6.5)
for dij ≤ 6.5

o

A, and 0 for dij > 6.5
o

A. Finally, α < 0 and β > 0 are scaling

parameters; in [33] they are given default values of α = −2 and β = 1
3
. At times it is

useful to consider simplified definitions of Φ; we can round the contact surface areas si to

integers and define g to be a step function: g(dij) is equal to 1 if dij ≤ 6.5
o

A and is equal
to 0 otherwise. A simplified definition of this type can be valuable for providing a “coarser”
view of the set of sequences with an affinity for the target structure.

As discussed above, the goal of the GC model is to design a sequence whose fitness value
Φ is minimized (i.e. as negative as possible); we will call such a sequence optimal. Clearly
this corresponds to constructing a sequence with many close-range H-H contacts, and very
few solvent-exposed H’s.

3 The Basic Algorithm and Experiments

An algorithm to find optimal sequences. Sun et al. [33] noted that there are 2n possible
amino acid sequences in the binary H/P model — too many to perform an exhaustive search
— and developed a heuristic method to find sequences of good fitness based on a genetic
algorithm. Their method does not provide any measure of how close the final designed
sequences are to the optimal sequence(s). In this section, we present a polynomial-time
algorithm to produce optimal sequences.

We begin by defining some notions from graph theory for the sake of completeness; we
refer the reader to texts such as [1, 7] for further details. A directed graph G consists of
a pair of sets: V (the vertices) and E (the edges). Each edge e ∈ E is an ordered pair of
vertices e = (u, v); we call u the tail of e and v the head. We also assume that each edge
has a given capacity ce, which is a positive number. Let s and t be two vertices of G. An
s-t cut in G is a partition of V into two sets, X and Y , so that s ∈ X and t ∈ Y ; we denote
such a cut by the pair (X, Y ). We say that an edge crosses a cut (X, Y ) if it has its tail
in X and its head in Y . The capacity of a cut (X, Y ) is equal to the sum of the capacities
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Figure 1: A small example of the construction of a directed graph from a target structure
with four possible contacts (1-6, 2-5, 5-8, 4-9).

of all edges that cross (X, Y ); we denote it c(X, Y ). The minimum s-t cut problem asks,
for a given graph G and vertices s and t, to find an s-t cut (X, Y ) of minimum capacity.
Although the details are beyond the scope of this paper, the minimum s-t cut problem can
be solved, for an arbitrary graph with n vertices and m edges, by algorithms whose running
times are bounded by O(mn log n) [36, 15], and efficient implementations exist for some of
these algorithms (e.g. [6]).

Now, let Φ be the fitness function corresponding to a given target structure of length n.
Recall that the target structure determines inter-residue distances dij and solvent-exposed
surface areas si; and that Φ is defined via a function g and parameters α < 0 and β > 0. Let
B denote the quantity

∑

i<j−2 |α|g(dij). We define the following graph G based on Φ. The
vertex set V of G consists of s, t, a vertex vi for each of the residue positions i = 1, 2, . . . , n in
the target structure, and a vertex uij for each pair of residue positions i, j for which i < j−2
and g(dij) > 0. The edge set E of G consists of an edge (s, uij) for each vertex uij, an edge
(vi, t) for each vertex vi which has a non-zero solvent-exposed contact surface area si, and
edges (uij, vi) and (uij, vj) for each vertex uij. We refer the reader to Figure 1 for an example
of the directed graph constructed by this procedure from an artificial 9-residue structure.
We now assign a capacity to each edge as follows. We assign a capacity of |α|g(dij) to the
edge (s, uij), a capacity of βsi to the edge (vi, t), and a capacity of B + 1 to all edges of the
form (uij, vi) and (uij, vj).

Let us consider the structure of the minimum s-t cut(s) in G. First, we say that a set X
of vertices is closed if (i) X contains s but not t, and (ii) for each uij ∈ V , X contains uij if
and only if it contains both vi and vj. We now have the following fact.

(3.1) If (X, Y ) is a minimum s-t cut in G, then X is a closed set.

Proof. First note that G has an s-t of capacity B; in particular, consider the cut ({s}, V −
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{s}). Now, consider a minimum s-t cut (X, Y ) in G. Suppose X contains a vertex uij but
not the vertex vi (the case of vj is the same). Then the edge (uij, vi) crosses (X, Y ) and
it capacity B + 1; this contradicts the assumption that (X, Y ) is a minimum cut. On the
other hand, suppose that X contains some pair of vertices vi and vj, but not the vertex uij.
Then the s-t cut (X ∪ {uij}, Y − {uij}) would have smaller capacity than (X, Y ), again a
contradiction.

For an n-symbol H/P sequence S, let Z denote the set of all vertices vi for which position
i in S is labeled H. Let X(S) denote the closed set consisting of s, the vertices in Z, and all
vertices uij for which vi, vj ∈ Z. Conversely, if X is a closed set, let S(X) denote the H/P
sequence in which position i is labeled H if vi belongs to X, and is labeled P if vi does not
belong to X. From these constructions, we see that there is a one-to-one correspondence
between n-symbol H/P sequences and closed sets in G. Now we come to the crucial fact
about G.

(3.2) Let X be a closed set and S(X) the corresponding H/P sequence. Then the capacity
of the s-t cut (X, V −X) is equal to B + Φ(S(X)).

Proof. From the definition of closed set, we know that the only edges crossing (X, Y ) have
the form (vi, t), where vi ∈ X, or (s, uij), where one of vi or vj does not belong to X. Thus,

c(X, V −X) =
∑

uij∈V

{vi,vj}6⊆X

|α|g(dij) +
∑

vi∈X

βsi

= B −
∑

uij∈V

{vi,vj}⊆X

|α|g(dij) +
∑

vi∈X

βsi

= B + α
∑

i<j−2

i,j∈S(X)H

g(dij) + β
∑

i∈S(X)H

si.

= B + Φ(S(X)).

Thus the fitness of an H/P sequence for the target structure differs from capacity of the
corresponding cut in G simply by the fixed additive constant B. Consequently, if (X, Y )
is a minimum capacity s-t cut in G, then S(X) is an optimal sequence — so to find an
optimal sequence for the target structure, we need only construct the graph G and compute
a minimum capacity s-t cut in it. Let p denote the number of residue pairs (i, j) in the target
structure for which g(dij) > 0; since the graph G has O(n + p) vertices and edges, we have

(3.3) An optimal sequence in the GC model can be computed in time O((n+p)2 log(n+p)).

Excluded-volume constraints in three dimensions imply that for each residue i, there will
only be a small constant number of other residues j for which g(dij) > 0. Thus, p can be
assumed to be proportional to n and hence the running time of the algorithm is O(n2 logn)
— roughly quadratic in the length of the sequence, rather than exponential.

8



www.manaraa.com

0

1

2

3

4

5

6

0 50 100 150 200 250 300 350 400 450 500 550

Running time (sec.)

Number of residues

Figure 2: Running time as a function of sequence length

Experiments with PDB structures. We implemented the above algorithm, making use
of the highly efficient code of Cherkassky and Goldberg for computing the minimum s-t cut
in a graph [6]. We tested the implementation on the 23 PDB structures considered by Sun
et al. [33], as well as on two larger protein structures — pepsin (326 residues) and pyruvate
kinase (519 residues). The running times of the algorithm (in CPU seconds) on a Sun Sparc
10 are depicted in Figure 2; for the structures of lengths 36–208 considered in [33], the
running times ranged from 0.5 to 1.9 seconds; for the largest structure (519 residues), the
running time was 5.7 seconds.

An advantage of testing the algorithm on real proteins is that we can compare the se-
quences we design we produce to the true sequence of the proteins, as in [33, 28]; this is a way
to assess the biological relevance of the GC model. For a protein structure from the PDB, let
us define its natural H/P sequence to be the one obtained by translating the protein’s true
amino acid sequence into an H/P sequence, according to a designation of each of the twenty
amino acids as either hydrophobic or hydrophilic. (Following Sun et al., we map the amino
acids A,C,F,I,L,M,V,W,Y to H, and the others to P .) Since the fitness function Φ associated
with the model is designed only to approximate the factors favoring the natural sequence,
the natural sequence is likely to be sub-optimal when scored according to Φ with respect to
its structure; correspondingly, the optimal sequence under Φ may differ non-trivially from
the natural sequence.

In Figure 3, we compute the percentage agreement between the natural and optimal
sequences for the 23 structures from [33] (in the column under “Basic Algorithm”); we also
reproduce the numbers of Sun et al. for the sake of comparison. It is interesting to note the
markedly varied way in which the percentages of overlap change, for different structures, as
we move from heuristically designed sequences to the optimal sequences. This is in keeping
with the observation above that optimality in the GC model is not the same as achieving
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Protein (PDB code) sequence
length

Sun et al. al-
gorithm

Basic algo-
rithm

Scaling algo-
rithm

1aaj 105 66 73 72
1aba 87 81 75 70

1aps 98 72 78 77
1arr (mon) 53 62 62 64

1arr (dim) 106 73 71 74
1bba 36 58 58 58

1bbl 37 68 57 68
1bov 69 74 74 70

1brq 174 68 74 71
1cis 66 64 68 64

1cmb (mon) 104 62 63 64
1cmb (dim) 208 70 74 73
1hel 129 74 79 78

1ifb 131 76 69 70
1kba (mon) 66 72 68 76

1kba (dim) 132 73 77 74
2gb1 56 80 79 70

2hpr 87 78 78 78
2il8 71 77 72 79

256b 106 81 77 75
3cln 143 62 72 70

3rn3 124 81 69 69
3trx 105 80 77 81

Length-weighted
average

72.1 72.6 72.2

Figure 3: Results for sequences

identity with the natural sequence. For certain of the proteins, the percentage agreement
jumped considerably when the designed sequence was computed optimally. For example,
the percentage agreement for calmodulin (3cln) increased from Sun et al.’s value of 62% to
72% for our optimal sequence. It is interesting to note that Sun et al. had conjectured the
low level of agreement for calmodulin, relative to most of the other structures studied, to
be due to intrinsic aspects of its structure. On the other hand, certain structures, such as
ribonuclease A (3rn3), showed significantly less agreement with the natural sequence when
solved to optimality.

In a “dual” fashion, we can test whether natural sequences have significantly better fitness
scores than random sequences with the same ratio of H to P residues. We investigate this
in Figure 4, which shows the score obtained by the natural sequence when plugged into the
GC optimization function Φ. This is depicted in the second column, and compared with the
average results for 100 randomly generated H/P sequences of the same composition in the
third column. The scores are linearly normalized so that the fitness value of the optimal
sequence is mapped to 1, while the “baseline” quantity β

∑n
i=1 si is mapped to 0. For the

ensembles of 100 random structures, the standard deviations for almost all are concentrated
in the interval [0.04, 0.065]. Thus in all cases but one (the short bovine pancreatic polypeptide
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Protein (PDB code) Basic alg.,
natural seq.

Basic alg.,
random seq.

Scaling alg.,
natural seq.

Scaling alg.,
random seq.

1aaj 0.72 0.60 0.73 0.59
1aba 0.82 0.60 0.83 0.58

1aps 0.83 0.59 0.83 0.58
1arr (mon) 0.68 0.61 0.73 0.63

1arr (dim) 0.77 0.62 0.82 0.60
1bba 0.59 0.61 0.64 0.65

1bbl 0.73 0.62 0.84 0.67
1bov 0.77 0.57 0.77 0.55

1brq 0.77 0.60 0.76 0.58
1cis 0.70 0.57 0.71 0.55

1cmb (mon) 0.73 0.61 0.72 0.58
1cmb (dim) 0.82 0.59 0.83 0.60
1hel 0.84 0.55 0.86 0.58

1ifb 0.78 0.64 0.85 0.66
1kba (mon) 0.78 0.61 0.79 0.61

1kba (dim) 0.81 0.60 0.80 0.59
256b 0.85 0.59 0.84 0.57

2gb1 0.79 0.60 0.82 0.58
2hpr 0.84 0.57 0.84 0.57

2il8 0.81 0.61 0.85 0.60
3cln 0.81 0.61 0.85 0.60

3rn3 0.77 0.58 0.76 0.56
3trx 0.82 0.61 0.83 0.60

Figure 4: Objective function scores of true and random HP sequences

1bba, for which the optimal sequence assumed all P values), the natural sequence scores
significantly better than the ensemble of random H/P sequences.

Finally, we can study the relation between the optimal and natural sequences at other
levels as well. In Figure 5, we show the percentage agreement on the 23 sample structures,
organized by amino acid type. That is — over all target structure positions occupied by
a given amino acid, what was the percentage agreement between the natural and optimal
structures? It is clear that the GC model produces much better agreement for some amino
acids than for others — some notable patterns are that agreement is markedly better for
polar residue positions than for non-polar positions, and best for acidic and basic residues
such as arginine, lysine, and asparagine. Indeed, alanine and methionine positions were
classified as polar more than half the time. One possible explanation for the lower level of
agreement among non-polar residue positions, parallel to observations of several previous
authors [33, 34], is the recurring presence of exposed non-polar residues on protein surfaces
for reasons of biological function, something that the simple optimization function of the GC
model does not take into account.

The Scaling Algorithm. Certain of the optimal sequences constructed have a sharp
imbalance in the ratio of H to P residues, and in most cases this a fortiori prevents them
from having a high degree of agreement with the natural sequence. We now describe an

11
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Amino Acid Basic algo-
rithm (%
agreement)

Scaling al-
gorithm (%
agreement)

ala 42 47
arg 93 78

asn 90 85
asp 89 82

cys 73 87
gln 75 62
glu 89 86

gly 75 60
his 70 59

ile 61 68
leu 53 71

lys 92 87
met 42 56

phe 57 76
pro 69 54

ser 83 78
thr 84 74

trp 62 76
tyr 55 70

val 56 67

Figure 5: Results by amino acid type

extension of our basic algorithm — the Scaling Algorithm — which attempts to construct
a sequence in which the ratio of H to P residues is roughly 2/3, matching the relative
frequencies of the corresponding amino acids in naturally occurring polypeptide sequences
[8].

The relative values of the parameters α and β in the fitness function Φ control the relative
proportions of H and P residues in an optimal sequence. Qualitatively, one can see this as
follows: as α is made increasingly negative, for fixed β, there is an increasing reward for
hydrophobic contacts; as β is made increasingly positive, for fixed α, there is an increasing
penalty for solvent-exposed hydrophobic residues. At a more concrete level, we can prove
that the minimum number of H residues in an optimal sequence increases monotonically as
β is held fixed and α is made increasingly negative.

The Scaling Algorithm, then, simply uses repeated calls to the basic algorithm described
above in order to determine the value of α (with β = 1

3
) for which the optimal sequence

has approximately the appropriate fraction of H residues. We note that a formulation of the
sequence design problem due to Shakhnovich and Gutin [34] directly imposes the constraint
of a fixed ratio of H residues to P residues, leading to an optimization problem different from
what we consider here. In our case, rather than performing an optimization with the value
of this ratio imposed as an explicit constraint, we attempt to achieve the ratio indirectly by
varying the parameters in the GC model.

12
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4 Evolutionary Fitness Landscapes

The global connectivity problem. We begin by recalling the discussion from the intro-
duction. We are given a fitness function Φ defined by an n-residue target structure in the
basic GC model, and we let Ω denote the set of all optimal sequences. One can construct ex-
amples in which Ω has size exponential in n; and when we use a simplified definition for Φ as
described in Section 2, the set Ω often turns out to be relatively large. The first algorithmic
problem we wish to solve is that of determining whether Ω is connected under single-point
mutations: for any pair of sequences S,S ′ ∈ Ω, is there a way to transform S into S ′ by
flipping the value of one residue position at a time, so that each intermediate sequence in
this transformation lies in Ω?

We first rephrase the problem as follows. For a set X ⊆ {1, . . . , n}, let σ(X) denote the
sequence S for which SH = X; that is, X denotes precisely the positions at which S has H
residues. Let f be a function that maps subsets of {1, . . . , n} to real numbers, defined by the
equation f(X) = Φ(σ(X)). It is not difficult to show that f satisfies the following property.

(4.1) For all sets X and Y , f(X ∩ Y ) + f(X ∪ Y ) ≤ f(X) + f(Y ).

Functions satisfying (4.1) are called submodular.
We say that two sets X,X ′ ⊆ {1, . . . , n} are adjacent if X differs from X ′ by the insertion

or deletion of precisely one element. We say that a sequence of sets C = {X1, X2, . . . , Xt} is
a chain between X1 and Xt (briefly, an X1-Xt chain) if for each i, Xi and Xi+1 are adjacent.
Now, two sequences S and S ′ differ by a one-point mutation if and only if the sets SH and
S ′

H are adjacent. Moreover, if we let Ωf denote the collection of subsets of {1, . . . , n} on
which f attains its minimum value, then we see that a sequence S belongs to Ω if and only
if SH ∈ Ωf . Thus, we have shown that our global connectivity problem is equivalent to the
following “connectedness” problem for f :

(†) Is it the case that for all pairs of sets X,X ′ ∈ Ωf , there is an X-X ′ chain
contained in Ωf?

We now show how to solve problem (†) in polynomial time for an arbitrary submodular
function f . We will assume that f is specified simply by an “oracle” that, in response to a
set X, returns f(X). The development of the algorithm involves a sequence of combinatorial
lemmas, beginning with two standard facts about submodular functions. The first is a direct
consequence of the submodular property.

(4.2) If X, Y ∈ Ωf , then X ∩ Y ∈ Ωf and X ∪ Y ∈ Ωf .

From (4.2) , we obtain a second basic fact.

(4.3) There exist unique sets X∗, X
∗ ∈ Ωf with the property that for all Y ∈ Ωf ,

X∗ ⊆ Y ⊆ X∗.

We note that standard algorithms for submodular function minimization can produce the
sets X∗ and X∗ in polynomial time; see e.g. [16, 29]. We will use Minimal(f) to denote the
polynomial-time algorithm computing X∗, and Maximal(f) to denote the polynomial-time
algorithm computing X∗.

13
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We say that a chain X1, . . . , Xt is monotone if Xi ⊆ Xi+1 for each i. We now state the
main lemma that will form the basis of the algorithm.

(4.4) Let X, Y, Z ∈ Ωf have the property that X ⊆ Y ⊆ Z. If there is a monotone X-Z
chain in Ωf , then there is a monotone X-Y chain in Ωf .

Proof. Let C = X1, . . . , Xt be a monotone chain in Ωf with X1 = X and Xt = Z. Consider
the sequence C′ = Y1, . . . , Ys obtained by removing duplicates from the chainX1∩Y, . . . , Xt∩
Y . For any positive i < s, there is a j so that Yi = Xj ∩ Y and Yi+1 = Xj+1 ∩ Y ; since C is
a monotone chain and Yi 6= Yi+1, it follows that Yi+1 is obtained from Yi by the addition of
precisely one element. It follows that C′ is a monotone chain. Since Y1 = X1 ∩ Y = X and
Ys = Xt ∩ Y = Y , C′ is an X-Y chain. Finally, we wish to show that C′ lies in Ωf . For each
Yi, there is a j so that Yi = Xj ∩ Y ; since Xj , Y ∈ Ωf , it follows from (4.2) that Yi ∈ Ωf .

As a first consequence of (4.4) , we have the following.

(4.5) Let Y ∈ Ωf . If there is an X∗-Y chain in Ωf , then there is a monotone X∗-Y
chain in Ωf .

Proof. Consider an X∗-Y chain C in Ωf with a minimum number of elements, and suppose
C is not monotone. Consider the maximal prefix C′ of C that is monotone; this is a chain
between X∗ and some set Xi ⊇ X∗. By the maximality of C′, we know that Xi+1 ⊆ Xi. Let
C1 denote the chain Xi+1, Xi+2, . . . , Y . By (4.4) , there is a monotone X∗-Xi+1 chain C0 in
Ωf ; but then the concatenation of C0 and C1 is an X∗-Y chain in Ωf with fewer elements
than C, a contradiction.

Combining (4.4) and (4.5) , we obtain

(4.6) Ωf is connected if and only if there is a monotone X∗-X
∗ chain in Ωf .

This already has some interesting consequences; for example, if Ωf is connected, then there
is a short proof of this fact. However, it does not yet provide us with a polynomial-time
algorithm to test whether Ωf is connected. For that we require one more notion.

We say that a set X ∈ Ωf is an impasse if X 6= X∗, and for every X ′ obtained from X
by the deletion of one element, X ′ 6∈ Ωf . Using (4.5) , we can show

(4.7) Ωf is connected if and only if it contains no impasse.

Proof. If Ωf is connected, then for every X ∈ Ωf , there is an X∗-X chain in Ωf , and hence a
monotone X∗-X chain in Ωf . It follows that no X ∈ Ωf is an impasse. Conversely, suppose
Ωf is not connected, and choose a set X ∈ Ωf that is minimal subject to the property that
there is no X∗-X chain in Ωf . We claim that X is an impasse; for if there is an X ′ ∈ Ωf

that can be obtained by deleting an element from X, then the minimality of X would imply
that there is an X∗-X

′ chain in Ωf , and hence an X∗-X chain in Ωf .

Just as (4.6) provided a short proof of the connectedness of Ωf , (4.7) provides a short
proof of the non-connectedness of Ωf . Together, they show the following algorithm correctly
decides if Ωf is connected.

14
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Compute X∗ = Minimal(f) and X∗ = Maximal(f)
Set W := X∗.

While W 6= X∗

Determine whether there exists i ∈ W

so that f(W − {i}) = f(W )
(whence W − {i} ∈ Ωf).

If there is such an i then

Update W := W − {i} and iterate.

If there is no such i then

W is an impasse;

Halt and declare that Ωf is not connected.

end while

Halt and declare that Ωf is connected.

The correctness of the algorithm follows directly from the fact that it produces either an
impasse or a monotone X∗-X

∗ chain. After the determination of the sets X∗ and X∗, the
algorithm performs at most n2 evaluations of the function f .

Global connectivity with a more general model of mutations. We have so far
discusssed the connectedness problem for Ωf under the assumption that a “unit step” consists
of the mutation of a single position in the sequence. Now consider, more generally, the case
in which a unit step could involve the simultaneous mutation of several positions in the
sequence. We will suppose that we are given a collection Λ consisting of subsets of the
sequence positions {1, . . . , n}; if a set L ⊆ {1, . . . , n} belongs Λ, we interpret this to mean
that all the sequence positions in L could undergo a mutation in a single unit step. The only
assumption we will make about Λ is that it is downward-closed: if L ∈ Λ and L′ ⊆ L, then
L′ ∈ Λ. Thus, if Λ consists of the empty set and all single-element subsets of {1, . . . , n}, we
have the problem (†) considered above; if Λ consists of all sets of size at most c, we have the
problem in which any c positions can simultaneously undergo a mutation.

Now, two sequences S and S ′ differ by the simultaneous mutation of a set L of sequence
positions if and only if for the sets SH and S ′

H we have (SH −S ′
H) ∪ (S ′

H −SH) = L. Thus,
we can define our problem in the following way. For two sets X,X ′ ⊆ {1, . . . , n}, we use
X∆X ′ to denote the symmetric difference (X−X ′)∪ (X ′−X) — the collection of elements
in one set but not the other. We say that X and X ′ are Λ-adjacent if X∆X ′ ∈ Λ. We say
that a sequence of sets C = {X1, X2, . . . , Xt} is a Λ-chain between X1 and Xt (briefly, an
X1-Xt Λ-chain) if for each i, Xi and Xi+1 are Λ-adjacent. Note that since φ ∈ Λ, this allows
Xi = Xi+1 for certain i. Our general connectedness question can now be phrased as follows.

(†′) Is it the case that for all pairs of sets X,X ′ ∈ Ωf , there is an X-X ′ Λ-chain
contained in Ωf?

If there is such a chain for all pairs X,X ′ ∈ Ωf , we will say that Ωf is connected under
Λ-adjacency.

We now show how to solve problem (†′) in polynomial time, assuming only an oracle for f
as before, and a second oracle that tells us, for a given L, whether L ∈ Λ. The development
of the polynomial-time algorithm will proceed roughly as follows. It will turn out that many
of the structural properties we established about adjacency carry over to Λ-adjacency, for a
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general downward-closed collection Λ. In particular, the notion of an impasse carries over.
However, since Λ is only specified by an oracle, and may have exponential size, it requires
more work to determine in polynomial time whether a given set in Ωf is an impasse. Once
we do this, however, we can apply an algorithm that is very similar in structure to the one
we developed above.

We say that a chain X1, . . . , Xt is graded if for each i we have either Xi ⊆ Xi+1 or
Xi+1 ⊆ Xi.

(4.8) Let X, Y ∈ Ωf . If there is an X-Y Λ-chain, then there is a graded X-Y Λ-chain.

Proof. Let C = X1, . . . , Xt be a chain in Ωf with X1 = X and Xt = Y . We produce a new
chain C′ by inserting, between each pair of consecutive sets Xi and Xi+1, the set Xi ∩Xi+1.
By (4.2) , Xi ∩Xi+1 ∈ Ωf ; since

Xi∆(Xi ∩Xi+1) = Xi −Xi+1 ⊆ Xi∆Xi+1 ∈ Λ

(and analogously for Xi+1), C
′ is a Λ-chain.

We now establish the analogues of (4.4) and (4.5) for Λ-chains.

(4.9) Let X, Y, Z ∈ Ωf have the property that X ⊆ Y ⊆ Z. If there is a monotone X-Z
Λ-chain C in Ωf , then there is a monotone X-Y Λ-chain C′ in Ωf such that C′ contains at
most as many elements as C.

Proof. Let C = X1, . . . , Xt be a monotone Λ-chain in Ωf with X1 = X and Xt = Z. Consider
the sequence C′ = Y1, . . . , Ys defined by Yi = Xi ∩Y ; note that Y1 = X and Yt = Y ∩Z = Y .
We have Yi ⊆ Yi+1 for each i, and

Yi∆Yi+1 = Yi+1 − Yi ⊆ Xi+1 −Xi = Xi∆Xi+1 ∈ Λ,

so C′ is a monotone X-Y Λ-chain. Finally, C′ lies in Ωf since for each i, Yi = Xi ∩ Y and
Xi, Y ∈ Ωf .

(4.10) Let Y ∈ Ωf . If there is an X∗-Y Λ-chain in Ωf , then there is a monotone X∗-Y
Λ-chain in Ωf .

Proof. Since there is an X∗-Y Λ-chain in Ωf , there is a graded one by (4.8) ; let us choose
a graded X∗-Y Λ-chain C in Ωf with a minimum number of elements. Suppose C is not
monotone. Consider the maximal prefix C′ of C that is monotone; this is a chain between
X∗ and some set Xi ⊇ X∗. By the maximality of C′, and the fact that C is graded, we
know that Xi+1 ⊆ Xi. Let C1 denote the chain Xi+1, Xi+2, . . . , Y . By (4.9) , there is a
monotone X∗-Xi+1 chain C0 in Ωf such that C0 has at most as many elements as C′; but
then the concatenation of C0 and C1 is an X∗-Y chain in Ωf with fewer elements than C, a
contradiction.

We define a Λ-impasse to be a set X ∈ Ωf such that X 6= X∗, and X −L 6∈ Ωf for every
non-empty set L ∈ Λ. Using (4.9) and (4.10) , we obtain the analogues of (4.6) and (4.7)
with essentially the same proofs.
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(4.11) Ωf is connected under Λ-adjacency if and only if there is a monotone X∗-X
∗

Λ-chain in Ωf .

(4.12) Ωf is connected under Λ-adjacency if and only if it contains no Λ-impasse.

The problem we now encounter is that Λ is only defined implicitly through an oracle,
and hence it is not immediately clear how to decide in polynomial time whether a set X is a
Λ-impasse — a crucial component of our earlier algorithm for determining connectivity. We
now show how to solve this problem in polynomial time.

Let X be a set in Ωf − {X∗}. We say that a collection of sets {Y1, . . . , Yt} supports X if
(i) Yj ∈ Ωf and Yj

⊂
6= X for each j, and (ii) for all Y ′ ∈ Ωf satisfying Y ′ ⊂

6= X, there is a j
such that Y ′ ⊆ Yj.

(4.13) For every X ∈ Ωf − {X∗}, there is a collection of at most n sets that supports
X, and it can be constructed in polynomial time.

Proof. For each j ∈ X − X∗, let f j denote the restriction of f to the set X − {j}; that is,
while f j assumes the same values as f , we view it as a submodular function mapping subsets
of X − {j} to real numbers. Note that for each such j we have X∗ ⊆ X − {j}, and hence
the minimum value of f j over X − {j} is equal to the minimum value of f over {1, . . . , n}.
Let Yj = Maximal(f j).

Let F = {Yj : j ∈ X − X∗}; we claim that F supports X. Clearly each Yj ∈ F belongs
to Ωf and satisfies Yj

⊂
6= X. Now consider any Y ′ ∈ Ωf satisfying Y ′ ⊂

6= X. There is some
k ∈ X such that Y ′ ⊆ X − {k}; since Y ′ ∈ Ωf , we know by (4.3) that k 6∈ X∗, and so
Y ′ ⊆ Yk ∈ F . It follows that F supports X.

By computing Maximal(f j), for each j ∈ X −X∗, we can obtain F in polynomial time.

(4.14) Let X ∈ Ωf − {X∗}, and let F be a collection of sets that supports X. X is a
Λ-impasse if and only if X − Y 6∈ Λ for each Y ∈ F .

Proof. If X is a Λ-impasse, then X − Y 6∈ Λ for all Y ∈ Ωf and hence specifically for all
Y ∈ F . Conversely, suppose that there exists X ′ ∈ Ωf , X

′ ⊂
6= X, for which X − X ′ ∈ Λ.

Since F supports X, there is a Y ′ ∈ F such that X ′ ⊆ Y ′; thus X−Y ′ ⊆ X −X ′ and hence
X − Y ′ ∈ Λ.

Combining (4.13) and (4.14) , we obtain

(4.15) Let X ∈ Ωf − {X∗}. There is a polynomial-time algorithm that either returns a
non-empty set L ∈ Λ so that X − L ∈ Ωf , or reports (correctly) that X is a Λ-impasse.

Finally, combining (4.11) , (4.12) , and (4.15) , we obtain the following polynomial-time
algorithm for determining whether Ωf is connected under Λ-adjacency.
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Compute X∗ = Minimal(f) and X∗ = Maximal(f)
Set W := X∗.

While W 6= X∗

Determine if there is a non-empty set L ∈ Λ
so that W − L ∈ Ωf.

If there is such an L then

Update W := W − L and iterate.

If there is no such L then

W is a Λ-impasse;
Halt and declare that Ωf is not connected.

end while

Halt and declare that Ωf is connected.

The pairwise connectivity problem. We now consider the problem of determining
whether there is a path of mutations between two given sequences S,S ′ ∈ Ω, so that all
intermediate sequences lie in Ω as well. Following the discussion at the beginning of this
section, we can re-phrase this pairwise connectivity problem in terms of the submodular
function f , and family Λ of allowable mutations: We are asking whether there is a Λ-chain
between two given sets X and X ′ that is contained in Ωf . If there is such a chain, we say that
X andX ′ belong to the same component of Ωf , with respect to Λ. We now give a polynomial-
time algorithm for deciding whether two sets in Ωf belong to the same component, and for
constructing an appropriate chain between them if they do.

We say that a set X ∈ Ωf is a Λ-cusp if X − L 6∈ Ωf for every non-empty set L ∈ Λ.
Thus, X is a Λ-cusp if and only if X is a Λ-impasse, or X = X∗. Hence, by (4.15) , we have

(4.16) LetX ∈ Ωf . There is a polynomial-time algorithm that either returns a non-empty
set L ∈ Λ so that X − L ∈ Ωf , or reports (correctly) that X is a Λ-cusp.

We begin by showing that each component contains a unique Λ-cusp.

(4.17) Let Γ ⊆ Ωf be a component of Ωf . Then there is a unique Λ-cusp in Γ.

Proof. There is clearly at least one Λ-cusp in Γ — take any set in Γ of minimum cardinality.
So suppose by way of contradiction that X and Y were two distinct Λ-cusps in Γ. Since X
and Y belong to the same component, there is a Λ-chain X1, . . . , Xt in Ωf with X1 = X and
Xt = Y . For i = 1, . . . , t, define Zi = ∩i

j=1Xj . Then we have X = Z1 ⊇ Z2 ⊇ · · · ⊇ Zt;
and by (4.2) , each Zi belongs to Ωf . Choose the minimum index k for which Zk

⊂
6= X, and

consider the set L = X−Zk. We have X−L = Zk ∈ Ωf . By our choice of k, L is non-empty,
and

L =
(

∩k−1
j=1Xj

)

−
(

∩k
j=1Xj

)

⊆ Xk−1 −Xk ⊆ Xk−1∆Xk ∈ Λ.

This contradicts our assumption that X is a Λ-cusp.

For a set X ∈ Ωf , let γ(X) denote the unique Λ-cusp of the component of Ωf that
contains X. The following statement is a direct consequence of this definition.

(4.18) Let X,X ′ ∈ Ωf . X and X ′ belong to the same component if and only if γ(X) =
γ(X ′).
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Now, given X and X ′ in Ωf , our approach to deciding whether they belong to the same
component is as follows. We first compute γ(X) and γ(X ′) in polynomial time, together with
Λ-chains C and C′ joining X and X ′ to their respective cusps; we show how to accomplish
this below. If γ(X) = γ(X ′), then X and X ′ belong to the same component, and we can
return the concatenation of C and C′ as a Λ-chain from X to X ′. If γ(X) 6= γ(X ′), then we
can correctly report that X and X ′ belong to different components.

Thus all that remains to show is how, given X ∈ Ωf , to compute a Λ-chain from X to
γ(X). For this, we employ the following algorithm.

Set W := X.

Repeat:

Determine if there is a non-empty set L ∈ Λ
so that W − L ∈ Ωf.

If there is such an L then

Update W := W − L and iterate.

If there is no such L then

W is a Λ-cusp;
Return the sequence of sets constructed from X to W.

end repeat

The cardinality of the set W strictly decreases in each iteration, so the algorithm halts in at
most n iterations. Since each iteration takes polynomial time by (4.16) , the overall running
time is polynomial. When the algorithm halts, the resulting set W is a Λ-cusp reachable by
a Λ-chain from X; thus it must indeed be γ(X).

5 Extensions to the GC Model

Fractional Hydrophobicity. In the standard GC model, each residue position in a se-
quence is either entirely hydrophobic (H) or entirely polar (P ). Suppose instead that we
allowed each residue position i to specify a hydrophobicity value zi, where zi is an arbitrary
real number in the interval [0, 1]. Thus, a protein sequence in this model would be a sequence
S ′ of n real numbers, each between 0 and 1. The penalty for exposing residue i to solvent
could be scaled by the hydrophobicity zi, and the reward for a pairwise hydrophobic con-
tact between i and j could be scaled by a product of the form zizj. Making these notions
concrete, we could define the fitness of a sequence S ′ as

Φ′(S ′) = α
∑

i<j−2

zizjg(dij) + β
∑

i∈SH

zisi.

Note the standard GC model is precisely the case in which we require each zi to be either 0
or 1.

One might hope that this generalization would provide an interesting contrast to the
discrete H/P model. But in fact, we are able to show the following somewhat surprising
result.

(5.1) For any target structure, with associated fitness function Φ′, there exists an optimal
sequence S ′ in which each zi takes the value 0 or 1.
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Proof. Consider a fitness function Φ′ in the fractional model, and let S ′ be an optimal
sequence in which the number of residues i with 0 < zi < 1 is minimum. We claim that
in S ′, each zi is equal to 0 or 1. For suppose not, and choose j so that 0 < zj < 1. For
y ∈ [0, 1], let S ′

y denote the sequence obtained from S ′ by changing the hydrophobicity value
for residue j to y. Now define a function ℓ : [0, 1] → R by ℓ(y) = Φ′(S ′

y). The optimality of
S ′ implies that ℓ(0) ≥ ℓ(zj) and ℓ(1) ≥ ℓ(zj). But ℓ is a linear function, so this implies that
ℓ(0) = ℓ(zj) = ℓ(1). Hence the sequence S ′

0 is also optimal, and it has fewer residues i with
0 < zi < 1, a contradiction.

In other words, there is always an optimal sequence in this fractional model that is in
fact just an H/P sequence.

Larger Finite Amino Acid Alphabets. The previous result shows that a straightfor-
ward “interpolation” of the H/P alphabet by real-valued hydrophobicities does not really
produce a new model. However, it is possible to produce models, with finite alphabets of
size greater than 2, that do exhibit behavior different from that of the basic GC model with
an H/P alphabet.

Let us suppose we wish to define a sequence design model over an amino acid alphabet
{a0, a1, . . . , ak}, where a0 will be designated as the most polar residue type. We first define
solvation parameters {δi : 0 ≤ i ≤ k} that indicate the penalty for exposing each residue
type ai to solvent. We will require that δ0 = 0 and δi > 0 for all i. We then define contact
parameters {εij : 0 ≤ i, j ≤ k} that indicate the reward for having a contact between residues
of type ai and aj. We will require that εij = εji ≥ 0 for all i, j, and ε0i = 0 for each i. Now,
in this model, a protein sequence S ′′ consists of a sequence of n numbers {t1, t2, . . . , tn} with
each ti ∈ {0, 1, . . . , k}; the meaning here is that residue i in S ′′ has amino acid type ati. The
fitness of S ′′ is then

Φ′′(S ′′) = α
∑

i<j−2

εtitjg(dij) + β
∑

i∈SH

δtisi.

It unlikely that there exists a polynomial-time algorithm to produce optimal sequences
with respect to any collection of parameters {δi} and {εij}, for we can show how to encode
the NP-complete maximum cut problem by an appropriate choice of these parameters.
However, we now show that it is possible to design optimal sequences efficiently with respect
to a large class of parameter sets.

We say that a set of contact parameters {εij : 0 ≤ i, j ≤ k} is layered if there exist non-
negative numbers {ε′ij : 0 ≤ i, j ≤ k} so that εij =

∑

a≤i,b≤j ε
′
ab. This notion is a useful one,

in that many natural sets of contact parameters can be shown to be layered. For example,
suppose we have an underlying set of numbers 0 = ψ0 ≤ ψ1 ≤ · · · ≤ ψk, and we define
εij = ψiψj, or εij = min(ψi, ψj). Then the resulting set {εij} is layered. In particular, the
H/P model is easily seen to be derived from a layered set of parameters.

We have developed a polynomial-time algorithm to design optimal sequences with respect
to any model with layered contact parameters and arbitrary solvation parameters.

(5.2) Suppose we are given a set of k + 1 amino acid types, with {δi} a set of solvation
parameters and {εij} a layered set of contact parameters. Then there is a polynomial-time

20



www.manaraa.com

algorithm that, given a target structure, produces a sequence in this model whose fitness is
optimal.

Proof. We define

B ′′ =
∑

i<j−2

∑

a≤k

b≤k

|α|ε′abg(dij) = |α|
∑

i<j−2

εkkg(dij).

We define the following graph G based on Φ′′. The vertex set of G contains

• vertices s and t;

• vertices v
〈1〉
i , . . . , v

〈k〉
1 for each residue position i;

• a vertex u
〈ab〉
ij for each pair of residue positions i, j satisfying i < j − 2 and g(dij) > 0,

and for each pair of numbers (a, b) satisfying 1 ≤ a, b ≤ k and ε′ab > 0.

The edge set of G contains

• an edge (s, u
〈ab〉
ij ) of capacity |α|ε′abg(dij) for each vertex u

〈ab〉
ij ;

• edges (u
〈ab〉
ij , v

〈a〉
i ) and (u

〈ab〉
ij , v

〈b〉
j ) of capacity B ′′ + 1 for each vertex u

〈ab〉
ij ;

• edges (v
〈1〉
i , v

〈2〉
i ), . . . , (v

〈k−1〉
i , v

〈k〉
i ), (v

〈k〉
i , t) of capacities βδ1si, βδ2si, . . . , βδksi for each

residue position i.

As in the algorithm of Section 3, we define a notion of closed sets in our graph G. In the
present context, we say that a set X is closed if

(i) X contains s but not t;

(ii) for each u
〈ab〉
ij ∈ V , X contains u

〈ab〉
ij if and only if it contains both v

〈a〉
i and v

〈b〉
j ;

(iii) for each residue position i there is a number qi so that v
〈a〉
i ∈ X if and only if a ≤ qi.

(If v
〈1〉
i 6∈ X, we can take qi = 0.)

One can verify that for a given choice of the numbers {q1, . . . , qn}, there is a unique closed
set X; we will refer to the numbers {qi} as the indices of the corresponding closed set X.

By an argument similar to that in the proof of (3.1) we can show that if (X, Y ) is a
minimum s-t cut in G, then X is a closed set. We now observe that there is a natural one-to-
one correspondence between closed sets in G and sequences of n residues over the alphabet
{a0, . . . , ak}. For given a closed set X, with indices {q1, . . . , qn}, we define a protein sequence
{t1, . . . , tn} in which ti = qi; conversely, given a protein sequence {t1, . . . , tn}, we construct
the closed set whose indices are the numbers {t1, . . . , tn}. We let S ′′(X) denote the sequence
associated with the closed set X.

Finally, we claim that for any closed set X, the capacity of the s-t cut (X, V − X) is
equal to B ′′ + Φ(S ′′(X)). Let {q1, . . . , qn} be the indices of X. For the sake of notation, we

define v
〈k+1〉
i to be t, for all i. Now, note that the definition of closed set implies that the
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edges crossing (X, Y ) consist of (v
〈qi〉
i , v

〈qi+1〉
i ) for those i with qi > 0, and (s, u

〈ab〉
ij ) where one

of v
〈a〉
i or v

〈b〉
i does not belong to X. Thus

c(X, V −X) =
∑

u
〈ab〉
ij

∈V

{v
〈a〉
i ,v

〈b〉
j }6⊆X

|α|ε′abg(dij) + β
∑

i

δqi
si.

= B ′′ −
∑

u
〈ab〉
ij

∈V

{v
〈a〉
i

,v
〈b〉
j

}⊆X

|α|ε′abg(dij) + β
∑

i

δqi
si.

= B ′′ −
∑

u
〈ab〉
ij

∈V

a≤qi, b≤qj

|α|ε′abg(dij) + β
∑

i

δqi
si.

= B ′′ + α
∑

i<j−2

εqiqj
g(dij) + β

∑

i

δqi
si.

= B ′′ + Φ′′(S ′′(X)).

Hence, to compute an optimal sequence, we construct the graph G and compute a min-
imum s-t cut (X, Y ). We know that X will be a closed set, and that S ′′(X) achieves the
minimum value of Φ′′. Thus we return S ′′(X) as an optimal sequence.
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